Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury.
نویسندگان
چکیده
Modulating the behaviors of reactive astrocytes is a potential therapeutic strategy for neurodegenerative diseases. We found that upregulation and activation of the epidermal growth factor receptor (EGFR) occur in astrocytes after different injuries in optic nerves in vivo. Activation of EGFR regulates genes and cellular processes representing most major markers of reactive astrocytes and genes related with glaucomatous optic neuropathy and other neural disorders. These results suggest that activation of EGFR is a common, regulatory pathway that triggers quiescent astrocytes into reactive astrocytes in response to neural injuries in the optic nerve, and perhaps other parts of the CNS. Targeting EGFR activation using an EGFR tyrosine kinase inhibitor prevents the loss of retinal ganglion cells in a model of glaucomatous optic neuropathy. Because these inhibitors are currently used clinically, our results present an approach to reactive astrocytes as a potential new target for the treatment of neurodegenerations.
منابع مشابه
Isolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملActivation of the epidermal growth factor receptor in optic nerve astrocytes leads to early and transient induction of cyclooxygenase-2.
PURPOSE The epidermal growth factor receptor (EGFR) appears in astrocytes after neural injury. The authors' laboratory has reported the presence of EGFR in glaucomatous optic nerves. The activation of EGFR is often associated with induction of cyclooxygenase (COX)-2. In this study, the induction of COX-2 pathway in rat optic nerve astrocytes was investigated. METHODS Induction of COX-2 was de...
متن کاملChanges in neurotrophic factor expression and receptor activation following exposure of hippocampal neuron/astrocyte cocultures to kainic acid.
Neurotrophic factor expression in the adult mammalian CNS is largely neuronal. However, upon traumatic injury reactive astrocytes express a number of neurotrophic factors including ciliary neurotrophic factor (CNTF), fibroblast growth factor (FGF), and NGF. In this study, we examined whether the upregulation of neurotrophic factors in reactive astrocytes and cultured astrocytes is a consequence...
متن کاملInhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury.
Lack of axon regeneration in the adult CNS has been attributed partly to myelin inhibitors and the properties of astrocytes. After spinal cord injury, proliferating astrocytes not only represent a physical barrier to regenerating axons but also express and secrete molecules that inhibit nerve growth, including chondroitin sulfate proteoglycans (CSPGs). Epidermal growth factor receptor (EGFR) ac...
متن کاملHippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats
Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 28 شماره
صفحات -
تاریخ انتشار 2006